Frankfurt, 27.11.2024

Are e-fuels a beneficial alternative to conventional fuels?

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

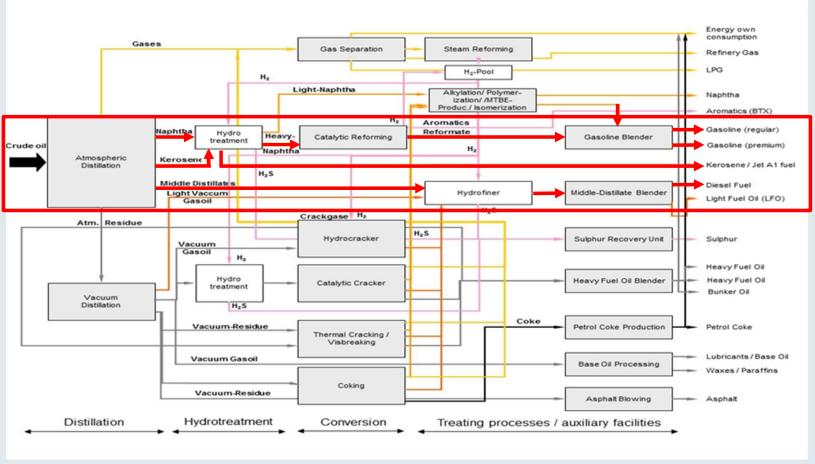
definition

- fuels in generell
 - fuels: combustible substances → chemical energy is converted into mechanical energy through combustion in combustion engines.
- conventionel fuels (gasoline, diesel, kerosene)
 - a mixture of different hydrocarbons (HC) based on crude oil
- e-fuels (electrofuels)
 - synthetic fuels (also HC) that are produced from water and carbon dioxide (CO₂) using electrical energy
 - known as power-to-fuel (PtF or in general PtX)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Prof. Dr.-Ing. Ralf Ehret



https://www.bmw.de

How conventional fuels are produced?

Why do we use hydrocarbons to generate energy?

- easy to handle
- no major hazard potential with careful handling
- high energy density

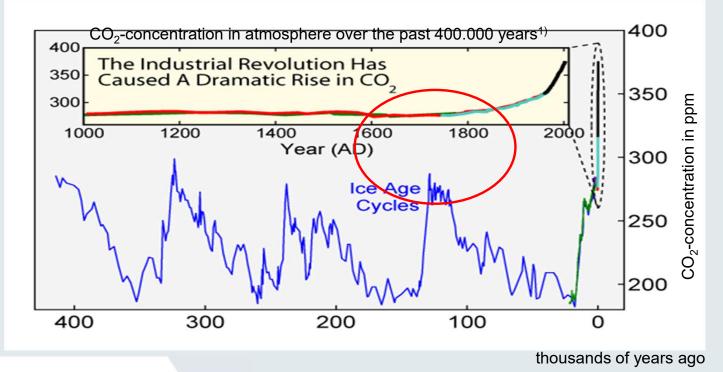
$$C_8H_{18} + 12,5 O_2 \rightleftharpoons 8 CO_2 + 9 H_2O_{(g)} + Energy$$

$$Energy = 5572 \, kJ/mol \equiv 13,55 \, kWh/kg \equiv 9,5 \, kWh/L$$

- hard coal
 - wood
 - natural gas

- 8,3 kWh/kg
- ≈4 kWh/kg
- ≈ 12,5 kWh/kg

KOPERNIKUS »PROJEKTE


Die Zukunft unserer Energie

Bundesministerium für Bildung und Forschung

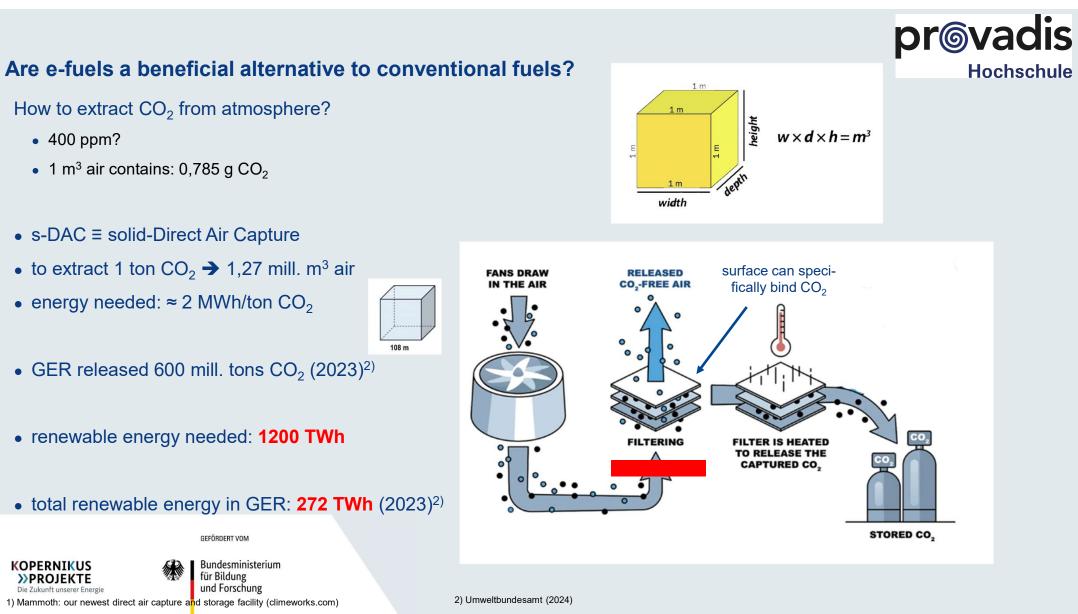
GEFÖRDERT VOM

What problems does the combustion of hydrocarbons cause?

KOPERNIKUS

>> PROJEKTE

Die Zukunft unserer Energie


Bundesministerium für Bildung und Forschung 1) Hileman B: Ice Core Record Extended: Analyses of trapped air show current CO2 at highest level in 650,000 years. In: Chemical & Engineering News. Band 83, Nr. 48, November 2005, S. 7

How can we solve this problem?

- perfect carbon circle!
- CO_2 balance = 0
- but....
- 1. How to extract CO_2 ?
- 2. How to produce green hydrogen?
- 3. How much energy we need?
- 4. Are we in a position, to generate this energy in a climate-neutral way?
- 5. At what cost can e-fuels be produced?

Prof. Dr.-Ing. Ralf Ehret

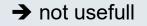
• 400 ppm?

KOPERNIKUS

>> PROJEKTE

Die Zukunft unserer Energie

7


Are there other sources for CO₂ available?

- low concentration of CO₂
- hard coal-fired power station
- up to 15% CO₂ in exhaust gas
- why just 15%?
- purity of the exhaust gas?
- I-DAC ≡ liquid-Direct Air Capture
- energy consumption increases by 30%
- not all CO₂ could be captured
- coal-fired power generation will end in 2038 (Ger)

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

Kohlekraftwerk Karlsruhe Luftbild Foto & Bild | luftbild rheinneckar, kraftwerk, kohle Bilder auf fotocommunity

pr@vadis Hochschule

Are e-fuels a beneficial alternative to conventional fuels?

Are there other sources for CO₂ available?

- low concentration of CO₂
- cement plant → cement production
 > responsible for 8% of global for CO₂ emissions¹⁾
- limestone is indispensable resource
 - ➤ responsible for 2/3 of emissions

https://www.rosenheim24.de/rosenheim/rosenheim-land/rohrdorf-ort50271/samstagoffenen-zementwerk-rohrdorf-rosenheim24-2362749.html

- polluted exhaust gas
- I-DAC ≡ liquid-Direct Air Capture
- energy needed: ≈ 2,4 MWh/ton CO₂²⁾

GEFÖRDERT VOM

https://www.spektrum.de/magazin/klimaneutrale-industrie-neuerfindung-von-zement/2150676
 geoengineeringmonitor.org (boell.de)
 Prof. Dr.-Ing. Ralf Ehret

How to produce green hydrogen?

• reverse watergas shift reaction (RWGS)

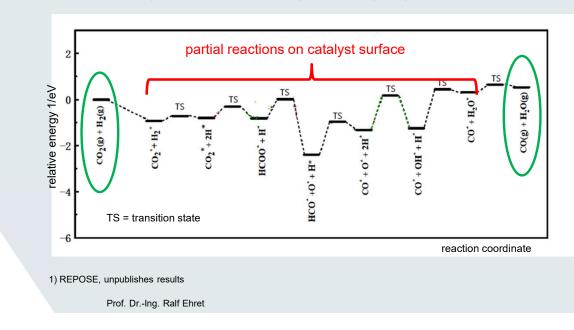
$$Energy + CO_2 + H_2 \xrightarrow{ca} CO + H_2O_{(g)}$$

- heterogeneously catalysed reaction
- several side reactions (Sabatier-reaction, methanisation, dry-, steamreforming, cocking,...)
- law of conservation of energy

KOPERNIKUS

>> PROJEKTE

Die Zukunft unserer Energie


- included in Fischer-Tropsch-reaction
- energy needed: 0,85 MWh/ton CO¹⁾

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium

How to produce green hydrogen?

RWGS reaction → necessity of green hydrogen

$$Energy + CO_2 + H_2 \rightleftharpoons CO + H_2O_{(g)}$$

pr©vadis

Hochschule

• H₂O PEM-electrolysis Anode:
$$H_2O \rightleftharpoons 2H^+ + \frac{1}{2}O_{2(g)} + 2e^-$$

Proton Exchange Membrane Kathode: $2H^+ + 2e^- \rightleftharpoons H_{2(g)}$
dc-power source

$$Energy + H_2 0 \rightleftharpoons H_{2(g)} + \frac{1}{2}O_{2(g)}$$

• renewable energy needed: 50 MWh/ton H₂¹⁾

GEFÖRDERT VOM

KOPERNIKUS PROJEKTE Die Zukunft unserer Energie Bundesministerium für Bildung und Forschung 1) Frauenhofer IWS (2023)

https://www.siemens-energy.com/global/en/home/productsservices/product-offerings/hydrogen-solutions.html

SIEMENS Ingenuity for lif

How to produce green hydrogen?

- renewable energy needed: 50 MWh/ton H₂
- current H₂-demand in GER: 10^6 tons \equiv 50 TWh (almost industrial use)
- total renewable energy in GER: 272 TWh (2023)
- expected demand (2050¹): 15[•]10⁶ tons ≡ 750 TWh
- necessity of import → H₂ transportation

https://www.siemens-energy.com/global/en/home/productsservices/product-offerings/hydrogen-solutions.html

GEFÖRDERT VOM

1) https://www.bmbf.de/bmbf/de/forschung/energiewende-und-nachhaltiges-wirtschaften/nationalewasserstoffstrategie/nationale-wasserstoffstrategie_node.html#:~:

How to produce green hydrogen?

- How is the current situation in water electrolysis?
- currently 17 manufacturers worldwide offering 92 different systems (PEM, alkaline, high-temperature)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- 2021: Chemiepark Rheinland (Wesseling) 10 MW PEM-electrolyser
 REFHYNE¹ → up to 1.300 tons H₂/y
- 8/2024: Oberhausen, 20 MW PEM-electrolyser TRAILBLAZER, Air Liquide
- 2024 Porsgrunn (Norway), 24 MW PEM-electrolyser (so far biggest in Europe)
- 2024 decision taken: 100 MW PEM-electrolyser REFHYNE II → up to 16.000 tons H₂/y (operational in 2027)
- 2023 Port of Rotterdam → start of construction of 5 plants, total capacity 1 GW
 → up to 180.000 tons H₂/y (operational in 2025-30)

1) Shell Deutschland Oil GmbH, SINTEF, Element Energy and Sphera

pr@vadis Hochschule

How to produce green hydrogen?

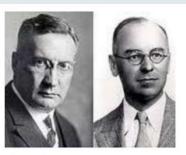
- projekt: OffsH2ore¹⁾
- feasibility study
 - off-shore wind farm
 - 500-MW platform for H₂O-PEM-electrolyses
 - capacity: 50.000 tons/y H₂
 - modular concept → easy scalability
 - energy: reversed osmosis → waste heat from electrolyses
 - clean and dry H₂ → compressed to 500 bar
- transportation:
 - via pipeline
 - via ship (max load 400 tons)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

aufgrund eines Beschlusses des Deutschen Bundestages

Schematic illustration of an offshore concept for hydrogen production and pressurised gas transport (ship or pipeline)


	ecology (LCA)	economy (TEA)			
pipeline	+	-			
ship	-	+			

1) PINE AG, Fraunhofer-Institut für Solare Energiesysteme ISE, SILICA Verfahrenstechnik GmbH, KONGSTEIN GmbH

How to produce e-fuels?

- syn gas: CO (from CO₂ via RWGS) + H₂
- Fischer-Tropsch-reaction:
- developed 1920 → commercialized in 1930s
- historical: coal liquefaction (2 steps)
- per kg HC \rightarrow 1,25 kg H₂O \rightarrow loss of H₂
- side products (CA, alcoholes, aldehydes, ketons, ...)

Franz Fischer Hans Tropsch

www.wikipedia.de

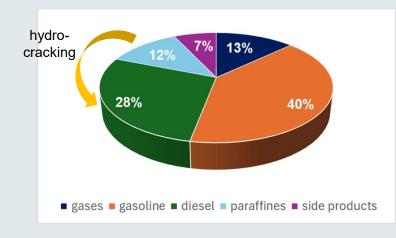
SASOL - Slurry phase distillate reactor¹⁾

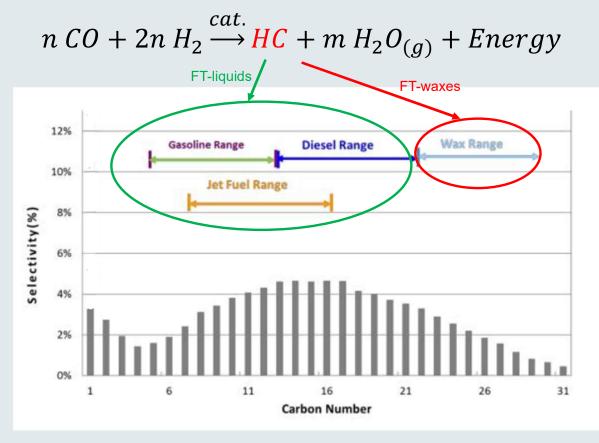
1) https://websites.umich.edu/~elements/fogler&gurmen/html/01chap/html/reactors/sasol.htm

 $n CO + 2n H_2 \xrightarrow{cat.} HC + m H_2O_{(g)} + Energy$

Prof. Dr.-Ing. Ralf Ehret

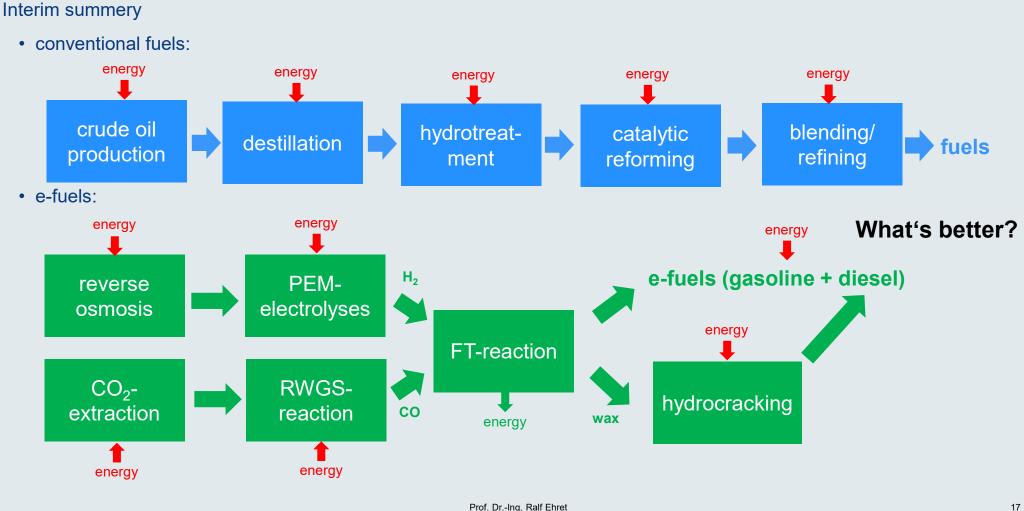
Bundesministerium für Bildung und Forschung


GEFÖRDERT VOM


15

How to produce e-fuels?

- Fischer-Tropsch-(FT)-reaction
- what means "HC"?
- product distribution = f (T, p, cat., reactor system, t)
- distribution for L(ow)T(emp.)-FT:



product distribution of LTFT (200 - 250 °C)¹⁾

1) Rui Xu, Departement of Chemical Engineering, Auburn Univ, 2013

Energy needed?

• to produce 1 L fuel (gradle to tank)

 conventional fuel 	1,6 - 1,8 kWh ¹⁾	≈2 kWh
• e-fuel	18 - 25 kWh ¹⁾	≈ 22 kWh

• fuel consumption in GER 2023²)

fuel	quantity [tons]	density [kg/L]	volume [m ³]
diesel	36*10 ⁶	0,84	42,9*10 ⁶
gasoline	18*10 ⁶	0,74	24,3*10 ⁶
kerosene	9*10 ⁶	0,80	11,3*10 ⁶
total	63*10 ⁶		

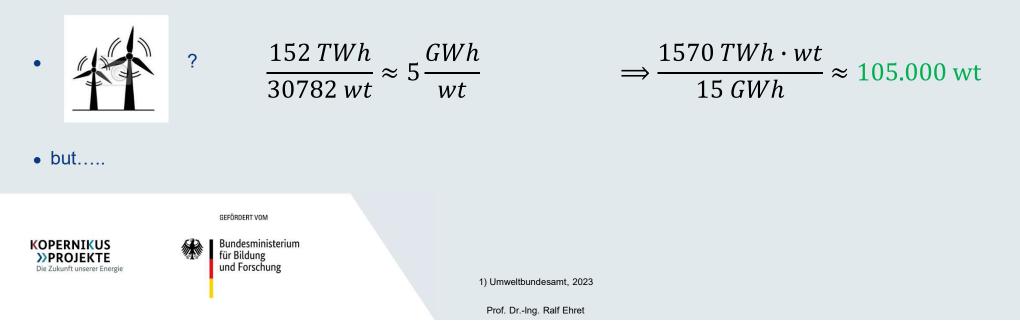
Prof. Dr.-Ing. Ralf Ehret

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

1) Frauenhofer IWS 2020, Deutsches Zentrum für Luft- und Raumfahrt, 2021

, Arbeitsgemeinschaft Energiebilanzen e.V.

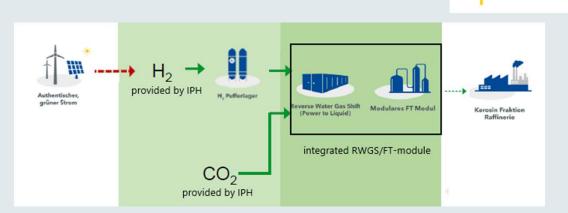


Additional energy needed?

 $Energy = 78,5 \cdot 10^{9}L \cdot 20 \ kWh/L = 1.570 \cdot 10^{9} \ kWh \equiv 1.570 \ TWh$

• renewable energy available in GER¹⁾

 $Energy (2023) = 513 TWh \Rightarrow 53\% renewable \Rightarrow 272 TWh$



Use of excess energy!

Energy lost $(2023)^{1} = 8.6 TWh \equiv 430.000 m^3 fuel$

- large scale FT-plants in Germany? → small scale
- REPOSE²⁾ ≡ Renewable Power Supply for e-fuels
- capacity: 2.500 tons/y fuel

INERATEC plant at IPH (operational Dec. 24)

1) PV- and wind energy, Umweltbundesamt, 2023, Statistisches Bundesamt 2023

2) CENA, Provadis Hochschule, Ineratec, Frauenhofer Institut

Bundesministerium

für Verkehr und digitale Infrastruktur

Transportation

- fuels (diesel, gasoline, kerosene) and CO_{2(sc/l)} → pipelines oder ships → established technology
- H₂?

energy source	calorific value [kWh/kg]	density [kg/m³]	volume [L]	in relation to cv
H ₂	33	0,09	11.200	3735
gasoline	11	750	1,3	1,3

• liquification

energy source	calorific value [kWh/kg]	density [kg/m³]	volume [L]	in relation to cv
H ₂ (liquid)	33	71	14,1	4,7
gasoline	11	750	1,3	1,3

Transportation

- boiling point H₂?
- storage, loading, loss of H₂ during transportation via ship.....?
- compression?

https://www.chemie-master.de/FrameHandler.php?loc=https://www.chemie-master.de/pse/pse.php?modul=O

increases with temperature and pressure

energy source [600 bar]	calorific value density [kWh/kg] [kg/m³]		volume [L]	in relation to cv
H ₂	33	48	18,7	6,2
gasoline	11	750	1,3	1,3

hydrogen induced embrittlement → cracking

Bundesministerium für Bildung und Forschung

- → specific steel alloys or composite reinforced pipelines
- transportation of H₂ is a major challenge!

pr@vadis

Hochschule

Other possibilities für H₂-transportation?

- as a chemical compound → e.g. NH₃
- March 2023: Signing of feasibility and implementation agreement between Namibia and Hyphen Hydrogen Energy¹⁾
- to proof within 2 years the possibility to install that:
- total invest: 10 billion \$ →
- desaltination plant
- H₂O-electrolyses → H₂
- Linde air separation plant \rightarrow N₂
- Haber-Bosch-ammonia plant → NH₃
- new harbour at Lüderitz bay + infrastructur
- capacity/year: 2 million tons ammonia, 350.000 tons H₂, 7.000 MW PV-electricity (total Namibia: 600 MW)
- transportation on liquid $NH_3 \rightarrow$ boiling point: -33 °C (H_2 : -252 °C)
- conversion into $H_2 \rightarrow$ via thermal catalytic cracking

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

1) joint venture between Nicholas Holdings Limited and ENERTRAG AG

model of the planned plant in Namib Desert¹⁾

https://www.google.de/maps

The life cycle assessment view

• kg CO₂-equivalents for 1 L fuel

	convent	tional fuels	e-fuels		
	gasoline diesel		gasoline	diesel	
well to tank (WTT) ¹⁾	0,5 - 1	0,6 - 1,2	0 - 2,4	0 - 2,7	
tank to wheel (TTW) ²⁾	2,4	2,7	0	0	
total (WTW)	2,9 - 3,4	3,3 - 4,5	0 - 2,4	0 - 2,7	

1) indirect emissions \rightarrow extraction, production + rafination, transport

2) direct emissions \rightarrow combustion

• 100% renewable energy is a necessity

			only costs for e-fuel production		
Tł	ne techno-economic view		N		
•	tax & OPEX values for 1	L gasoline			
		conventional fuel	e-fuel		
		1,60 €		3,18€	
	mineral oil tax1)	65 ct	mineral oil tax ¹	65 ct	
	CO ₂ tax	10 ct	CO ₂ tax	-	
		85 ct		253 ct	
	crude oil		electricity + CO_2	20 ct	
	refinery		hydrogen	180 ct	
	transportation		transportation	11 ct	
	margin		margin	15 ct	
	VAT		VAT	27 ct	

1) fix amount, no percentage, diesel mineral oil tax: 47 ct

2) Promotionsarbeit S. Schemme, FZ Jülich 2020

Current situation?

"Ørsted scraps flagship European green fuels project"

- 201 mil. € investment
- 55.000 tons green Methanol (MeOH)
- CO₂ → combined heat and power plant + green H₂
- cancelled in 8/2024
- MeOH price to high

"Fulcrum BioEnergy abandons trash-to-fuel plant in Nevada. The waste gasification start-up abruptly laid off most staff in mid-May" (2024)

- capacity 42 million L of e-fuel per year
- employed about 120 people.
- permits no extended and technical problems

Kurz vor Fertigstellung stoppt der dänische Konzern den Bau einer Fabrik für synthetisches Methanol. Der Grund: Es rechnet sich nicht mehr.

https://cen.acs.org/energy/Fulcrum-BioEnergy-abandons-trashfuelplant/102/web/2024/06

Shell Nederland Raffinaderij B.V is to temporarily pause on-site construction work at its 820,000 tonnes a year biofuels facility at the Shell Energy and Chemicals Park Rotterdam in the Netherlands to address project delivery and **ensure future competitiveness given current market conditions** (July 2024).

pr@vadis Hochschule

Are e-fuels a beneficial alternative to conventional fuels?

Current situation in Ger?

	Projekt	Hauptprodukt	Kapazität	Standort	Produktionstechnologie	Angekündigte Inbetriebnahme	CO2-Quelle	Geplantes Einsatzfeld
1	Solarbelt	Kerosin	360 t/a	Werlte	Fischer-Tropsch	Seit 2021	Punktquelle Biomethan	Luftfahrt
2	NextGate	eFuels und Wachse	200 t/a	Hamburg	Fischer-Tropsch	Seit 2022	Biogenes CO2 per Tankwagen	Keine Angabe
3	Reallabor Westküste 100/ KeroSyn100	Kerosin	600 t/a	Demonstrationsanlage Raffinerie Heide	Methanol-to-Jet	2023/2024	Punktquelle Zementwerk	Luftfahrt
4	Ineratec	eFuels	3.500 t/a	Industriepark Hoechst	Fischer-Tropsch	2024	Biogas	Keine Angabe
5	Shell Rheinland Raffinerie	Kerosin	100.000 t/a1	Köln	Nicht bekannt	2025	Altholz	Luftfahrt
6	HyKero	Kerosin	42.000 t/a	Böhlen-Lippendorf	Fischer-Tropsch	2026	Punktquelle Biomethan	Luftfahrt u.a.
7	Jangada	Kerosin	34.000 t/a	ehemaliger Flugplatz in Drewitz (GRAL)	Fischer-Tropsch	2027	Biogene Punktquelle	Luftfahrt
8	Reallabor Westküste 100/ KeroSyn100	Kerosin	20.000 t/a	Demonstrationsanlage Raffinerie Heide	Methanol-to-Jet	2027	Punktquelle Zementwerk	Luftfahrt
9	reFuels – Kraftstoffe neu denken	Raffination Syn- Crude	Bis zu 50.000 t/a	MiRO Karlsruhe	Fischer-Tropsch	2027	Nicht bekannt	Nicht bekannt
10	OMV Burghausen	Kerosin	50.000 t/a	Voraussichtlich im Raum Burghausen (Bayern)	Nicht bekannt	Ende der 2020er- Jahre	Nicht bekannt	Luftfahrt
11	Concrete Chemicals	Kerosin u.a.	30.000 t/a SAF	Rüdersdorf	Fischer-Tropsch	2028	Punktquelle Zementwerk	Luftfahrt u.a.
12	DAWN	Kerosin	3.500 t/a	Jülich	Fischer-Tropsch	Nicht bekannt	Sun to liquid	Luftfahrt
13	E-Kerosin-aus-der-Luft	Kerosin	274 t/a	Rostock- Laage	Fischer-Tropsch	Nicht bekannt	Nicht bekannt	Luftfahrt u.a.
14	Technologie-Plattform (TPP)	SynCrude, Kero- sin, Methanol u.a.	10.000 t/a	Leuna	Diverse Forschungsmodule	Baubeginn: 2024	Nicht bekannt	Keine Angabe
15	Green Fuels Lausitz	Methanol und Kerosin	200.000 t/a	Industriepark Schwarze Pumpe (Lausitz)	Methanol-Synthese/Fischer-Tropsch	Nicht bekannt	Abfallverwertung	Keine Angabe
16	Green MeOH	Methanol	200.000 t/a	Chemiepark in Stade	Methanol-Synthese	Nicht bekannt	Punktquelle Gaskraftwerk	Seefahrt
17	PtX 1.0	Kerosin	274 t/a	Böhlen- Lippendorf	Nicht bekannt	Nicht bekannt	Nicht bekannt	Luftfahrt
18	PtX Lab Lausitz	Kerosin	10.000 t/a	Lausitz	Fischer-Tropsch	In Planung	Biogene Punktquelle/DAC	Luftfahrt
19	SAF@STR	Kerosin	120.000 t/a	Stuttgart	Nicht bekannt	Nicht bekannt	Punktquelle Zementwerk	Luftfahrt

Dozent:in

summary

- extreme amounts of renewable electrical energy required
 - so far not available → heavy investment necessary
- an overnight changeover is not feasible
 - stepwise approach → blending of e-fuels via a quota system and/or taxes
- challenging H₂ transportation
 - no sufficient solution so far → more research needed
- economy vs. ecology
 - politics can set the framework conditions through taxes
- fully integrative systems (DAC + elektrolyses → e-fuels) necessary
 - outside GER → continued dependencies
- economy of scale

E-fuels as an interim solution?

Why e-fuels at all?

Bundesministerium für Bildung und Forschung

GEFÖRDERT VOM

BEGLEITFORSCHUNG P2X-RINGVORLESUNG

Your opinion is important - We look forward to your participation!

Ihre Meinung ist wichtig - Wir freuen uns über Ihre Teilnahme!

Foto von Firmbee.com auf Unsplash

SPONSORED BY THE

KOPERNIKUS P2X PROJEKTE The Future of Our Energy Federal Ministry of Education and Research

www.soscisurvey.de/P2X-Ringvorlesung/

PARTICIPATION CERTIFICATE

Participation Certificate Request VL4

GEFÖRDERT VOM

10

Bundesministerium für Bildung und Forschung

THANK YOU FOR YOUR **PARTICIPATION – SEE YOU** NEXT WEEK

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung